The Secret Life of Commented-Out Source Code
Tri Minh Triet Pham, Jinqgiu Yang

Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada
{p_triet,jinqiuy}@encs.concordia.ca

ABSTRACT

Source code commenting is a common practice to improve code
comprehension in software development. While comments often
consist of descriptive natural language, surprisingly, there exists a
non-trivial portion of comments that are actually code statements,
i.e., commented-out code (CO code), even in well-maintained soft-
ware systems. Commented-out code practice is rarely studied and
often excluded in prior studies on comments due to its irrelevance
to natural language. When being openly discussed, CO practice is
generally considered bad practice. However, there is no prior work
to assess the nature of CO code practice: prevalence, evolution,
motivation, and necessity of utilizing CO code practice.

In this paper, we perform the first study to understand CO code
practice. Inspired by prior work in comment analysis, we develop
automated solutions to identify CO code and track its evolution in
development history. Through analyzing six open-source projects of
different sizes and in diverse domains, we find that CO code practice
is non-trivial in software development, especially in the early phase
of development history, e.g., up to 20% of the commits involve
CO code practice. We conclude common evolution patterns of CO
code and find that developers may uncomment and comment code
more frequently than expected, e.g., 10% of the CO code practices
have been uncommented at least once. Through a manual analysis,
we identify the common reasons that developers adopt CO code
practices and reveal maintenance challenges associated with CO
code practices.

KEYWORDS

commented-out code, comment analysis, comment/code evolu-
tion

ACM Reference Format:

Tri Minh Triet Pham, Jinqiu Yang. 2020. The Secret Life of Commented-Out
Source Code. In 28th International Conference on Program Comprehension
(ICPC °20), October 5-6, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3387904.3389259

1 INTRODUCTION

Source code comments play an important role in software devel-
opment and maintenance, e.g., helping developers document and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7958-8/20/05....$15.00
https://doi.org/10.1145/3387904.3389259

‘ protected void importClass(String importPackage,
String name, String as) {

\

(.

‘ - // module.addImport(as, name);
‘ + output.addImport(as, name);

\

\

Figure 1: An example of CO code in Apache Groovy where
the variable module is no longer relevant, but the newly-
added code logic is similar to the CO code.

1| @AfterClass

‘ public static void cleanup() {

;‘ - //clearProperty("atmosphere.disabled");
1\ + clearProperty("atmosphere.disabled");
3‘ 3}

Figure 2: An example of uncommenting CO code to fix bugs
in test cases. The flaky tests are reported in CXF-8086 and
CXF-8087.

understand the code logics and ease maintenance efforts [2, 8, 12, 22—
24]. Comments often constitute of natural language descriptions
to complement the expression ability of code. Since comments are
not executed, developers may utilize this feature of comment to
temporarily store unreachable code. Code is embedded as part of
comments and is temporarily harbored in code repositories for po-
tential later use. We call the code lines that are placed in comments
as commented-out code, i.e., CO code for short.

CO code practice is controversial in the public eye. For exam-
ple, we find many heated discussions on the usage of CO code on
StackOverflow using the keyword “commented out code”. There
are many possible reasons to explain why CO code is considered
controversial. First, CO code is not actively maintained, so even
if the contained code logic is later reused, the exact code is not
up-to-date with the latest version, e.g., the relevant live code may
have undergone refactoring. Figure 1 shows an example of CO code
from Apache Groovy. The commit adds a new statement (line 5), and
its code logic is similar to the CO code line in line 4. However, the
CO code in line 4 is not actively maintained after being commented
out, i.e., module in line 4 is no longer available and is renamed to
output in live code. Second, checking in incomplete code is consid-
ered as an invalid archive strategy. Instead, modern version control
systems or tooling support on feature toggling should be utilized
to achieve the same goal.

While there exist valid concerns on CO code practice, there
are cases where CO code practice may help developers effectively
handle disruptions during the development. However, such effec-
tiveness comes with a cost: Developers may overlook the instability
of CO code and forget to stabilize the temporary solutions that use

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

CO code. For example, when fixing bugs, developers may comment
out and modify buggy lines to produce temporary patches. Since
developers are not sure about the quality and stability of the fix,
they may prefer to leave the original code logic in comments. Fig-
ure 2 shows an example of utilizing CO code in Apache CXF. When
updated to work with JDK 11, line 3 was commented out as part
of the fix for CXF-7741 that can quickly address the symptom of
unsuccessful build. Note that this temporary fix does not fix the
root cause. Moreover, this temporary fix introduces flaky tests. The
CO code was not uncommented until years later after several flaky
tests were reported (i.e., CXF-8086 and CXF-8087). The CO code in
this example is useful to help developers quickly decide how to fix
the reported flaky tests.

While many prior studies [7, 16, 20] have analyzed comments
comprehensively, there has been no work that carefully examines
the practice of CO code. Most of the prior work focuses on the
natural language descriptions in comments. Since CO code is in the
format of code, and therefore is considered not interesting in prior
studies. However, CO code practice, as a controversial approach
that developers may utilize during software development, should
be studied to understand the current practice and reveal potential
maintenance challenges of CO code practice.

In this work, we perform the first study to understand the prac-
tice of utilizing CO code in software development. We developed
lightweight approaches that specialize in analyzing CO code. The
developed tool detects instances of CO code in a stable software
version and tracks the history of CO code instance in the entire
development history, i.e., when the CO code is first introduced
(comment-out), when the CO code is brought back as live code
(uncomment) and when the CO code is completely deleted from
the code repository. Our evaluation shows that the developed tool
achieves satisfying accuracy so that we can apply the tools to per-
form a systematic study of CO code practice.

In total, we study CO code practices in six open-source projects
of different size (LOC) and from diverse domains: VLC Android
and NewPipe are two mobile applications from F-Droid dataset [3];
Groovy, and CXF are desktop applications from Apache founda-
tion [4]; JUNG is a popular network/graph framework that is used
in a previous comment classification work [20]; and SWT is a graph-
ical interface toolkit for Eclipse [5].

Our study focuses on understanding CO code practice from the
following aspects: how often developers utilize CO code, i.e., the
prevalence and evolution, how likely CO code lines co-transit, and
why developers utilize CO code, i.e., the motivation of introducing
CO code and uncomment CO code. In particular, we answer the
following four research questions (RQs).

e RQ1: How prevalent is CO code practice? Given the rep-
utation of CO code, it is interesting to learn how prevalent
CO code is in well-maintained open source repositories. We
find that CO code is not very prevalent in the latest version,
however CO code is actively used (i.e., being introduced,
moved and uncommented) in the development history.

e RQ2: What are the evolution patterns of CO code? Since
we know CO code is often modified, we are interested in
learning the lifecycle of CO code, and determine which evo-
lution patterns they follow. We find that most of the CO code

Tri Minh Triet Pham and Jingiu Yang

is introduced and removed. However, a non-trivial portion
of them is uncommented to reuse the code logics of CO code.

¢ RQ3: How often do CO code lines co-transit? After we
learned about the lifecycle patterns of the CO code, we con-
tinued to understand whether the CO code instances would
co-transit with each other over their lifecycles. We find that
CO code instances often do not co-transit.

e RQ4: What are the purposes of utilizing CO code prac-
tice? As we know that CO code is frequently used, we con-
tinue to unveil developers’ motivations of utilizing CO code
practice. We find that majority of them are motivated by
two goals which are to introduce new code and to remove
code. The remaining purposes include but not limited to
code reversion, bug fixing, or temporarily code disabling for
experiments.

Paper Organization. The rest of the paper is organized as follows.
Section 2 describes our approach to detect and track the history of
CO code and an evaluation of the developed approach. Section 3
describes the studied Java open-source projects and the motivation,
method, and results of each RQ. Section 4 summarizes the threats
to validity. Section 5 lists the related work on comment analysis.
Finally, Section 6 concludes this study and describes future work.

2 APPROACH

In this section, we describe our automated approaches to extract
the instances of CO code and track the history of such instances
in code repositories. For each of the approaches, we evaluated the
accuracy of the approach on a statistically significant data set.

2.1 Definition of CO Code: Our Studied Scope

For this paper, we define commented-out source code as an indepen-
dent, syntactically correct code statements that were commented
out. The following code elements are excluded from this study.

e Inline code that is not independent e.g., extra arguments in
function calls that are commented out, and part of a state-
ment that is commented out.

e Partial code that is not syntactically correct e.g., missing a
semi-colon.

2.2 Identifying Commented-Out Code

Comment Extraction. First, our approach needs to identify all the
Java files in an open-source project. Second, we utilize the Python
module Comment Parser ! to extract all the comment lines from the
Java files identified in the previous step. Comment Parser extracts
comments for many languages such as C/C++, Java, Python. For
Java files, Comment Parser extracts both the single-line comments
(i.e., marked by // and /**/) and multi-line comments (i.e., marked
by /**/).

Pre-processing the Extracted Comments. After extracting all
comment lines from Java files, our tool first merges consecutive
comment lines into comment blocks. It is necessary to merge com-
ment lines into blocks so that our tool does not miss CO code cases

!Comment Parser: a Python module to extract comments. https://github.com/
jeanralphaviles/comment_parser

The Secret Life of Commented-Out Source Code

where the embedded CO code in comments spans multiple com-
ment lines. The code snippet below shows one method invocation
that spans multiple lines.

1\ //An example of CO code instance that spans multiple comment lines, note
‘ that comment symbols // are omitted for clear illustration.

‘ this.runInInterceptorAndValidate(

3 ‘ "signed_issuer_serial_token.xml",

1 PROTECT_TOKENS,

5 SIGNED);

Second, we filter out all the comments about license and Javadoc
[15]. Such comments may contain code elements. However, such
“CO code" instances are less interesting to study since they are more
likely to be stable and unlikely used by developers to perform some
temporary tasks, i.e., resulting comment and uncomment activities
and indicating maintenance challenges. Hence, we excluded all the
comments on license and Javadoc from our analysis.

Extracting CO Code from Comments. We adopt a lightweight
regex-based approach to detect CO code, which is different from
previous work on comment analysis [16, 20]. We decided to pursue
a slightly different approach because of a few concerns. First, pre-
vious studies that use machine learning to categorize comments,
e.g., Steidl et al. [20], Pascarella and Bacchelli [16], focus on all
comment categories. CO code is one of the categories and a less
important one compared to other more significant categories. As a
result, although the performance of all categories is sufficient, the
accuracy of identifying CO code is less satisfying, and such inaccu-
racy will impact our study results significantly. Second, prior work
classifies the comments at the line level and it is unclear whether
the classification is still accurate for block level. Since CO code may
span multiple comment lines, adopting machine learning-based
approaches from prior work may not work well for our goal.

Our tool uses regular expressions 2 (which are inspired by the
regular expressions used in [1, 20] but modified and expanded upon
to directly match source code in comments’ text) to identify CO code
from comment blocks. For each comment block, if it contains any
of the following escaped patterns, this comment block is considered
to contain CO code by our tool.

(1) This regular expression is used to detect method calls: [a-
ZA-Z0-9]+\s\(*?\\s*2(\;\()

(2) Declarations: (public|private[void|protectedinew)\s+.+2(\;/\{)

(3) Code that can be followed by a block of code:
(iffwhile[for|catch)\s*\(.* and (else/do[try|finally|switch)\s *\{.*

(4) Common statements: a return statement (return*\.*?\;), or
an assignment statement (=\.+2\;).

Evaluating the performance of our CO extraction tool. To
evaluate the accuracy of our CO code extraction tool, we need
to obtain the ground truth: for each comment line, we need to
know whether it is a CO code instance. However, due to the large
number of comments in the studied projects, we took a statistically
significant (95% + 5%) sample of comments and manually determine
the ground truth. For most of the comments, it is straightforward
to determine whether the comment contains CO code. However,
for a few cases, when a very short code element is embedded in
a regular comment line, whether or not it is a CO code instance
becomes less clear. For such cases, we read the surrounding code and

ZRegular Expression syntax based on Python re library: https://docs.python.org/3/
library/re.html

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Table 1: The precision and recall of our CO code extraction
tool.

Name #Cmts #CO Code Precision Recall F;
(Ground Truth)
VLC Android 245 12 100% 100% 100%
NewPipe 330 4 100% 100% 100%
JUNG 342 85 100% 100% 100%
Apache Groovy 375 43 84% 100% 91%
Apache CXF 380 35 97% 100% 98%
Eclipse SWT 381 29 97% 100% 98%

comments to make a judgment. In total, we sampled 2053 comments
from the six studied projects. We measure the performance of our
CO code extraction tool using two metrics: precision and recall.
Precision is the percentage of the CO code extracted by our tool
that is a true CO code instance. Recall is the percentage of all the
true CO code instances that are extracted by our tool. Table 1 shows
the precision and recall of our CO code extraction approach on a
statistically significant sample on comments. We achieve 100% in
recall for all the studied projects. For most of the evaluated projects,
the precision is satisfying, i.e., over 97%. For Apache Groovy, the
precision in identifying CO code is 84%. We examined the false
positives in detail and discovered that in Groovy, the developers
use many syntactically correct code snippets in the comments for
documentation purposes. Groovy provides support to simplify Java
programs. Hence developers use examples of Java code snippets to
show what are the functionalities of some Groovy source code files.
Since such uses of code in Groovy are mainly for documentation,
similar to license and Javadoc, we mark them as false CO code. The
accuracy of our CO code extraction tool (97%) is comparable to or
even better than prior work that completes a similar task (89% [20]
and 91% [16]).

2.3 Tracking the History of CO Code

Live Code
3 —
‘GE) N
e 8
£ 3
s} 3
o @
i= =}
2 @
(%) Q

Commented-out
Code

A

(5) moved

Figure 3: Possible transitions of commented-out code

We developed an automated approach to track the history of
CO code instances in code repositories and to assign a transition

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

label to each of the CO-related changes. Note that a commit may
contain many changes on CO code. The transition label is used to
understand the evolution patterns of CO code practice.
Identifying CO Code Changes. We utilize pydriller [19] to iter-
ate all the commits in the entire development history (i.e., from
the first commit until the latest commit as shown in Table 3). In
particular, our tool identifies all the commits that modify Java files.
For each modified Java file in the identified commits, we use the
tool described in Section 2.2 to extract CO code practices from the
two versions: before and after the commit is applied.

Labeling the CO Code Changes. We assign each CO code tran-
sition a label. Such labels on CO code transitions include introduce,
uncomment, comment, move, and fade. We describe the possible tran-
sitions between possible statuses of CO code instances in Figure 3.
In addition to the transitions labels on CO code changes, Figure 3
includes two additional transition labels that are not directly on
CO code instances, but on the code instances had at one point in
the commit history been part of a CO code instance.

Our approach of assigning a transition label to a CO code change
is based on matching the extracted CO code instances in the two
versions of one commit. The matching would help us decide the
exact transition label of each CO code change. First, we extract and
transform the code elements in CO code instances to perform a better
matching process. We summarize the transformations as follows:
1) We remove all the comment symbols, e.g., /*. 2) We remove all
the empty spaces from the heading and tailing of the code element,
e.g., “_, tabs, and newlines. 3) For the cases of nested comments
(i-e., separated by (//) on the same comment line), we extract the
code element of the nested comment (i.e., after the nested /), as a
separate code element. Using 3), we can track each part of a nested
CO code instance so that when a part is moved to a new location,
our tool will correctly identify the transition label move instead of
introduce. Note that we also apply the second transformation to
regular code lines so that we can perform a more accurate matching
between CO code elements and regular code lines.

After the previous extraction and transformation, for each ver-
sion, we obtain two lists: list CO, which contains all the CO code
lines and list_live, which contains all the code lines that are not
in comments. As a result, for each file in a commit, we obtain
four lists of code. From the version before the commit, we ob-
tain list_ CO_before and list_live_before and from the version after
the commit, we obtain list_CO_after and list_live_after. Then, our
approach tries to match the two lists of CO code instances (i.e.,
list_CO_before and list_CO_after) one-by-one and label each of the
CO code change with one the five transition labels as shown in
Figure 3, i.e., introduce, comment, move, uncomment, fade. For each
CO code element in list_ CO_before,

(1) If it still exists in list_CO_after, the corresponding CO code
transition is marked as move. The CO code instance is moved
to other code locations in the same source-code file.

(2) If we cannot find the exact same code element in list_CO_affter,
then it indicates the removal of the CO code line. If the CO
code line can be found in list_live_after, and the number of
lines that are identical to the CO code line in list_live_beforeis
equal to the number of lines that are identical to the CO code
line in list_live_after + the number of live code lines identical

Tri Minh Triet Pham and Jingiu Yang

Table 2: The precision of assigning transition labels to CO
code changes.

Name # CO code changes Precision
examined
VLC-Android 342 93%
NewPipe 310 92%
JUNG 350 957
Apache Groovy 377 94%
Apache CXF 376 93%
Eclipse SWT 382 99%

to the CO code lines that are removed from list_live_after,
the CO code change is marked as uncomment.

(3) Otherwise, if we cannot find the CO code in both list_CO_after
and list_live_after, then it means that it is completely re-
moved as CO code from the project source code (fade from
comment).

We then repeat a similar process by iterating each code element in
list_CO_after. If the code element can be found in list_live_before,
the CO code change will be marked as comment. If the code element
cannot be found neither in list_live_before nor in list_ CO_before,
the CO code change is marked as introduced as commented-out code.
Discussions. An alternative approach to process and label CO code
changes per commit is to analyze the diff format of the commit.
However, since the diff output is generated by existing diff algo-
rithms, which may not consider the peculiarity of comments, the
diff output on comments may yield inaccurate results. For example,
if a few consecutive code statements are commented out using /*..."/,
the diff output will only show that the first and the last lines are
deleted, i.e., commented-out, while the lines in between remain as
unchanged. Below is an example commit from VLC-Android for
which the diff output fails to highlight that the lines between /*..."/
are deleted in the commit. Hence, we chose not to work on the diff
output directly.

‘.‘ - String sql = "CREATE TABLE IF NOT EXISTS "+

| + /+String sql = "CREATE TABLE IF NOT EXISTS "

5| PLAYLIST_MEDIA_TABLE_NAME + " (" +

i ..

',‘ - db.execSQL(createPlaylistMediaTableQuery);
m‘ + db.execSQL(createPlaylistMediaTableQuery);*/

Evaluating our approach that tracks the history of CO code.
For the commits with assigned transition labels on CO code changes
by our approach, we manually examine each transition label and
decide the precision of our approach on a statistically significant
sample (95% =+ 5%). In total, we manually examined 2137 CO code
changes and decide whether the assigned transition label is correct.

Table 2 shows the precision of the assigned transition labels in
the studied projects: the percentage of CO code changes with correct
transition labels assigned by our approach. The sampled transitions
include various types of CO code, e.g., uncomment and comment.
The precision of the assigned transition labels ranges from 92% to
99%, which shows that our approach achieves reasonable precision
in tracking the history of CO code. The two main reasons are that
some faded as comment CO code changes are mistakenly labeled as
uncommented and some CO changes that introduced as comment

The Secret Life of Commented-Out Source Code

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Table 3: Statistics on the studied projects. Note that all the statistics are calculated on Java files.

Name Studied LOC #Cmts # License # Javadoc # CO Code # CO code commits

Version (License and Javadoc included) (# CO Code/# Cmts) (# CO code commits/# all the commits)
VLC Android 0e94770 8K 2498 639 1183 32 (1.3%) 273 (4.4%)
NewPipe 4a76bad 48K 4322 826 1187 54 (1.2%) 201 (4.0%)
JUNG bf7e5b9 48K 14488 2617 8752 775 (5.3%) 70 (19.3%)
Apache Groovy f105fc3 190K 92121 26991 49469 1491 (1.6%) 1008 (6.2%)
Apache CXF b79021f 39M 189216 131792 22168 2231 (2.4%) 1017 (6.7%)
Eclipse SWT 871c71d 381K 197918 28747 129246 3015 (1.5%) 2017 (7.2%)

are mistakenly labeled as commented. Although we tried to remove
some false positives in this type by handling duplicate code lines,
we are not able to completely remove false positives.

3 STUDYING CO CODE PRACTICE

In this section, we answer four RQs based on the study on six
diverse open-source Java projects. For each of the RQs, we present
the motivation, method, and results.

Studied Projects. We analyze six open-source software systems
in Java. The selected projects are of different sizes and in diverse
domains. Specifically, we selected the six projects according to the
following criteria. First, we started with the list of projects that
are frequently analyzed by prior work on comment analysis [16,
20]. Such projects are well analyzed by prior work on comment
and will allow us to compare our approach of CO code extraction
with prior work for performance. Second, we selected the projects
that are well-maintained and have a long development history.
Last, we diversified the studied projects by including the ones on
different platforms, i.e., PC/workstation OS and mobile OS. Table 3
summarizes the detailed statistics of the studied projects. The size of
the analyzed projects ranges from eight thousand to 39 million lines
of code (LOC). We analyzed the latest versions when we started
this study. VLC Android and NewPipe are Android projects from
f-Droid [3]. SWT is from Eclipse [5]. The remaining projects are
from Apache Foundation [4].

RQ1: How prevalent is CO code practice?

Motivation. CO code practice is usually perceived as a controver-
sial engineering practice [6, 9, 10, 14]. Whether or not there ex-
ists CO code practice in well-maintained and mature open-source
projects is unknown. It is possible that CO code practice is more
prevalent in certain development phases compared to a recent and
stable software version. In this RQ, we analyze the prevalence of
CO code from two aspects: in a stable version and from the entire
development history (i.e., at commit level).

Method. We assess the prevalence of CO code practice from two
aspects. First, we applied our CO code extraction tool (described
in Section 2.2) to identify CO code instances in the latest version
(when we started the study). The evaluation (in Section 2.2) of our
CO code extraction tool shows the approach achieves acceptable
precision and recall (i.e., 96.3% and 100% respectively), which are
comparable and even better than previous work. Second, we stud-
ied the prevalence of CO code practice in the entire development
history of all the studied projects. In particular, we applied the tool
described in Section 2.3 to the development history of each project.

The developed tool iterates all the commits and identifies CO code
changes in each commit. We are interested to know 1) how many
commits involve at least one CO code change and 2) for different
development periods, whether CO code practice plays a role at
different levels of significance. To study 2), we divide all the com-
mits that modify Java files from the development history of each
studied project into intervals. For all the projects except for JUNG
and NewPipe, each interval contains 100 commits. For JUNG and
NewPipe, each interval consists of 50 commits due to the shorter
development period as well as the fewer number of commits in the
history. For example, there are totally 1,223 commits in NewPipe,
which results 25 intervals in total. Differently, Eclipse SWT has
a much longer development history with 23,135 commits, so the
resulting plot has 232 intervals, each consisting of 100 commits. We
summarized the activities (i.e., accumulative LOC of CO code) of
all the CO code commits in each interval.

Results. Table 3 summarizes the total number of comment lines,
the numbers of comment lines in license and Javadoc, and the total
number of CO code lines for the studied projects. The majority of
the comments are about license and Javadoc. Only a small portion
of all the comments are code comments that explain code logics
using natural language. Table 3 also shows the percentage of CO
code lines among all the comments, ranging from 1.2% to 5.3%. After
excluding license and Javadoc, the percentage of CO code lines in
the studied projects ranges from 2.3% to 9.5%. The results shows
that CO code instances are not prevalent in the recent versions.

Despite the small portion of CO code lines in the recent stable
versions, we find that there exists a non-trivial portion of commits
that involve at least one CO code change. Table 3 shows that ranging
from 4.0% to 19.3% of all the commits modifying Java files in the
studied projects include at least CO code change. Considering the
small number of CO code compared to code lines (e.g., CO code in
VLC Android takes only 4%, of all the code lines), CO code changes
are much more frequent.

In addition, we also analyze the CO code activities in different
development periods in the entire development history. Figure 4
shows that how many code lines are being actively developed/main-
tained in the equally divided ten time intervals. In particular, we
quantify the development/maintenance activities using two met-
rics: 1) how many CO code lines are being added (the white bars in
Figure 4), i.e., by either the transitions comment or introduce; and 2)
how many CO code lines are no longer commented out (the gray
bars in Figure 4), i.e., by either the transitions uncomment or fade.
Our study shows that for the studied projects, the activities on CO
code are not equally distributed across the development history.

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Tri Minh Triet Pham and Jingiu Yang

[Comment/Introduce
B Uncomment/Fade

VLC Groovy

2K

300

200

10 20 30 40 50

CXF

2K

il

100 120

6K

Number of modifications

5K

4K

3K

2K

1K

o

50 100

_n,unﬂ.___LLL_aaﬂLJ_

150 200

Intervals of 100 commits

Figure 4: Accumulative modified LOC of CO code change commits in the entire development history for the projects where

each interval contains 100 commits.

= Comment/introduce

2 B Uncomment/Fade

S 2000

2 e 300 NewPipe
g 17 250

& 1500

T 200

3 1250

Number of

% 12345 % 5 10 15 20 25
Intervals of 50 commits

Figure 5: Accumulative modified LOC of CO code change
commits in the entire development history for the two
projects where each interval contains 50 commits.

For JUNG, NewPipe, Groovy, and Eclipse SWT, there exist certain
development periods in which CO code practice is heavily used,
while for most of the development periods, the CO code practice
is not so commonly used. Differently, in VLC Android and Apache
CXF, we find that CO code practice is steadily used in the entire
development history.

Our study shows that despite the prevalence of CO code in a recent
version is low, the prevalence of CO code in development history
is non-trivial. We also find that in certain development periods,
CO code is much more actively adopted than other development
periods. This indicates the common use of CO code by developers
for short-lived tasks.

RQ2: What are the evolution patterns of CO
code?

Motivation. From the RQ1 of this study, we notice that there exists
a non-trivial portion of commits that modify CO code. It means the
transitions on CO code happen frequently, e.g., a code element is
commented, followed by being uncommented. Developers frequently
change the status of CO code as a temporary solution to many de-
velopment tasks. However, simply examining the statistics from
RQ1 does not provide detailed evolution patterns. Evolution pat-
terns will provide a comprehensive understanding of the lifecycle
of CO code instances. For example, how often developers add code
directly as CO code for an on-going feature development? This
motivates us to investigate the lifecycle of CO code. In particular,
how one CO code instance evolves from the beginning to the end,
i.e., removed completely from a code repository?

Method. We use the developed approach (described in Section 2.3)
to track the history of each CO code instance. Our implemented ap-
proach assigns a transition label to each CO code change. Based on
different combinations of transition labels, we observe four compre-
hensive evolution patterns that can cover all possible lifecycles. All
four patterns start with the CO code is introduced either through
1) commenting out live code or 2) being introduced as CO code.

e Pattern 1 (P1): <introduced as CO code | commented> —
<moved>" (optional) — <faded as CO code>

The Secret Life of Commented-Out Source Code

A CO code instance is introduced. Then, it might be moved

multiple times (optional), and eventually is completely deleted.

The CO code instance has never been uncommented to be-
come part of the live code.

Pattern 2 (P2): <introduced as CO code | commented> —
<moved>* (optional)

P2 is different from P1 only for the last transition. An instance
of P2 remains as CO code in the project, unlike P1, in which
the CO code is eventually removed.

e Pattern 3 (P3): <introduced as CO code | commented> —
<moved>* (optional) — <uncommented>

The CO code has been uncommented at least once. This code
still exists in the source code, either as CO code or live code.
Pattern 4 (P4): <introduced as CO code | commented> —
<moved>* (optional) — <uncommented> — <moved>* (op-
tional) — <faded as CO code | faded as live code>

The CO code has been uncommented at least once. Unlike
P3, this code is eventually removed from the source code.

To identify the lifecycle pattern of one CO code, we first analyze

whether this CO code has a transition label of uncomment in its
history. If it has uncomment, we confirm whether the CO code is
eventually removed from the repository (P4) or not (P3). If the CO
code does not have a transition label of uncomment, for the case
that is eventually removed, we identify the lifecycle as P1, if not
removed, the lifecycle pattern would be P2.
Results. Table 4 shows the details of CO code evolution patterns
in the studied projects. Most of the CO code instances will never
become live code again, i.e., P1 and P2 take the majority of the
cases. Most of Pattern 1 cases are caused by commenting out code
before deletion, usually as part of a large-scale refactoring or imple-
mentation change, e.g., a to-be-implemented feature is significantly
modified. Pattern 2 means that the CO code instances remain in the
repositories as of the newest version. They may become live code in
the future. The P2 cases are typically caused by incomplete features
that developers are still actively working on, e.g., the relevant test
cases are commented out to avoid meaningless failures.

P3 and P4 stand for the CO code instances that have been un-
commented at least once. Combining the cases in P3 and P4 takes
a non-trivial portion of all the CO instances, i.e., ranging from 2%
to 16%. The results show that developers leverage CO code prac-
tice to temporarily harbor some code logics which will later be
reenabled.In fact, the utilization of code logics in CO code may be
more frequent than what the union of P3 and P4 indicates. Recall
the example shown in Introduction (Figure 1), CO code line may
become obsolete but its code logic can still be reused by developers.
Such cases are not included in the union of P3 and P4, while in the
union of P1 and P2. In short, the re-utilization of CO code may be
underestimated if we only look at P3 and P4.

Our analysis of CO code lifecycle patterns reveals that there
exists a non-trivial portion of CO code instances, i.e., up to 16%,
would be uncommented and become code again. However, we
also notice that majority of the CO code instances will either
remain in comments or are eventually deleted from source-code
repositories.

ICPC *20, October 5-6, 2020, Seoul, Republic of Korea

Table 4: The distribution of four lifecycle patterns of CO
code instances

Name # Pattern 1 # Pattern 2 # Pattern 3 # Pattern 4
VLC Android 957 (80.0%) 41 (3.4%) 36 (3.0%) 162 (13.6%)
NewPipe 438 (63.4%) 66 (9.6%) 59 (8.5%) 128 (18.5%)
JUNG 1014 (56.3%) 580 (32.2%) 55(3.1%) 153 (8.5%)
Apache Groovy 5841(72.3%) 1348 (16.7%) 577 (7.2%) 308 (3.8%)
Apache CXF 2105 (34.9%) 2044 (33.9%) 1033 (17.2%) 843 (14.0%)
Eclipse SWT 20294 (78.2%) 2457 (9.5%) 393 (1.5%) 2823 (10.9%)

[Commits with non-100% uncomment rate
B Commits with 100% uncomment rate

Commented out - Uncomment

Introduced as CO code » Uncomment

12% T 13%
o

100%

29% ff 25%

80%

60%

88% 87%
0% |0, | | 75% 80% ’
3

66%

57% | | 57% 56%

51%
20%

0%

VLC NewPipe JUNG Groovy CXF SWT VLC NewPipe JUNG Groovy CXF SWT
Figure 6: Plots to show the distribution of uncomment rate
of the commits that uncomment at least one CO code line:
the CO code lines that are introduced as CO code (the left
side) and the CO code lines that are commented out (the
right side).

RQ3: How often do CO code lines co-transit?

Motivation. RQ2 reveals that a non-trivial portion of CO code
become live code (i.e., uncomment) again in software development.
Since not all the CO code lines will be uncommented, it is likely
that not all the co-transitioned CO code lines will co-transit again,
i.e., becoming live code together by one follow-up commit. If CO
code lines often do not co-transit, e.g., developers may gradually
uncomment a few CO code lines in each follow-up commit, it indi-
cates that uncommenting can be an error-prone practice and may
need further tool support since developers need to precisely choose
which lines (i.e., a subset of lines) to be live code again. Therefore
we examine the co-transition status of CO code practices.

Method. We track co-transition status for two types of transitions:
1) introduced as CO code — uncommented; and 2) commented out
— uncommented. For every commit that performs one of the tran-
sitions (i.e., introduced as CO code or commented out, we count the
total number of CO code lines (N). We track the next steps (i.e.,
follow-up commits) of all the CO code lines introduced by the first
commit. For each follow-up commit that uncomments any of the
CO code lines, we count the total number of uncommented code
lines (n). We name this percentage (n/N) as uncomment rate. For
example, Commit-1 introduces five CO code lines. There are two
possible scenarios: 1. A follow-up Commit-2 uncomment part of
the five CO code lines (e.g., three lines), the uncomment rate is
60% (< 100%). 2. A follow-up Commit-2 uncomment all of the five

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

CO code lines, and its uncomment rate is 100%. We calculate the
uncomment rate of all the follow-up commits and summarize the
percentages of follow-up commits with 100% and non-100% for
each studied project. If there are more follow-up commits with an
uncomment rate of non-100%, the uncommenting practice may be
more error-prone due to the ad-hoc and tedious nature.

Results. Figure 6 summarizes how often CO code lines co-transit,
which is reflected by uncomment rate of the relevant follow-up com-
mits. In particular Figure 6 highlights the percentages of commits
with uncomment rate of 100% and non-100%. As we analyzed two
types of transitions, we present the results separately, i.e., the CO
code lines that are 1) introduced as CO code — uncommented (the
left side) and 2) commented out — uncommented (the right side).

The co-transition results show that for both transition types, it
is very often that CO code lines do not co-transition. Among the
commits involving CO code that perform the first type of transition
(i.e., introduced as CO code), for only 12% to 34% of them, all the CO
code lines are sequentially uncommented in the same commit (100%
uncomment rate). Similarly, except for CXF (75% of the commits
having 100% uncomment rate), only 34% to 49% of the commits
have an uncomment rate of 100%.

A non-100% uncomment rate indicates that the involved CO code
lines are more scattered in the evolution, i.e., it may take several
fellow-up commits to uncomment all the CO code lines that are
initially introduced in the same commit. If the evolution of CO
code instances is more scattered, it would be more challenging
to perform uncommenting activities since the ad-hoc and tedious
process may be more error-prone. Our study shows that many of
the CO code-related commits are scattered, e.g., 87% of the relevant
commits in Eclipse SWT involving gradually uncommenting part
of the CO code lines.

Moreover, by comparing the two types of transitions, we find
that the first type of CO code origin, i.e., “introduced as CO code”,
generally result more scattered CO code evolution, compared to
the origin of “commented out”. One reason we notice is that the
total number of CO code introduced directly may contain a larger
number of CO code lines, e.g., typically for implementing new
features. An example of such practice is that developers add a
chunk of code as CO code to implement a new feature, which is
not completely ready due to various reasons, hence developers may
need to gradually uncomment the CO code lines.

We find that CO code lines that are introduced in the same commit
often do not co-transit together, i.e., scatteredness in the CO code
evolution. It is common that for one commit that introduces many
CO code lines, there are several follow-up commits to gradually
uncomment part of the CO code lines. Such scattered CO code
evolution may pose extra challenges since selecting which code
lines to uncomment remains as an ad-hoc and tedious process.

RQ4: What are the purposes of utilizing CO code
practice?

Motivation. Utilizing CO code practice has both advantages and
disadvantages. Despite frequent usage, there are no empirical evi-

dence on what exactly CO code practices are used for. Understand-
ing developers’ common needs of adopting CO code practice will

Tri Minh Triet Pham and Jingiu Yang

Table 5: The most common purposes to comment code and
uncomment CO code. The rows are ranked according to how
frequent each purpose is. Type annotates whether the CO
code is test or code. Transition represents either comment-
ing out (C) or uncommenting (U). CUT is short for code un-
der test.

Type Trans. Purpose

Test C
Test C

Temporarily disabled because of buggy CUT
Temporarily disabled because the CUT is
undergoing major modifications

Removed because the code and its tests

are no longer in use

Code/Test C

Code C Code used for debugging is disabled
after fix bugs
Code C Removed because the design is changed
Code C Replaced by refactored code
Code C Removed in the process of adoption, migration,
or removal of an external library
Code C Removed because the code contains bugs
Code C Removed because data structure/type is changed
Code C Removed because code is redundant
Code C Replaced by a new/improved functionality
Code C Temporarily removed until modifications
are made to work with the new functionality
Code U Re-enabled because the buggy dependent
code is fixed
Code U Enabled because dependencies are satisfied
Code U Reverted to a previous version because
the new version is buggy, the design is
changed, or code was
commented out by mistakes
Test U Enabled/Re-enabled after bug in CUT is fixed
Test U Enabled/Re-enabled after the CUT is

implemented or modified

provide empirical findings on how to improve the current status
of CO code practices: Some CO code practices can be refactored
out while some indicate maintenance challenges and developers
may need more tool support to properly manage the evolution
of CO code. For instance, if some CO code practices are used to
implement feature toggling [18], they can be refactored by using
feature toggling libraries, such as Unleash 3. Another example us-
age of CO code is that developers may use CO code to annotate
self-documented technical debt [17], then such CO code use may
become outdated and cause extra burden, i.e., requiring non-trivial
modifications once brought back as code. Obtaining a comprehen-
sive understanding of the purpose of utilizing CO code is needed
to inspire future research to provide better tooling support so that
CO code practices will become less ad hoc.

Method. To understand the motivations behind the frequent use
of CO code, we analyzed and categorized a statistically significant
sample set of CO code transitions. In particular, we are interested
in examining two types of transitions: commented out and uncom-
ment. These two transitions play important roles in the lifecycle
of CO code and obtaining a comprehensive understanding of the
important transitions reveals the motivations of adopting CO code.

3Unleash: an open source feature flag and toggle service. https://unleash.github.io/

The Secret Life of Commented-Out Source Code

For each project, we took a statistically significant (95%+5%)

sample without replacement of all the transition instances. In total,
we manually examined 342 comment transitions and 161 uncomment
transitions. For each of the sampled CO code change, we analyzed
the neighboring comments and code, the commit message and the
corresponding bug report to determine why the CO change was
adopted by developers: what is the reason that developers comment
out code or introduce code as CO code; what is the motivation that
developers decide to uncomment CO code. For a few cases that we
analyzed, there is a lack of information for us to understand the
motivation of introducing CO code, e.g., the commit message is
empty or vague, or there are no corresponding bug reports. For
such cases, we further analyzed the next transitions of the CO code
instance and used them to reverse-engineer the motivation of the
sampled transition.
Results. Our manual study (i.e., on 342 comment transitions and
161 uncomment transitions) reveals a list of motivations behind the
transitions on CO code. When CO code is introduced as CO code (i.e.,
one type of comment transition), the most common motivation is
to introduce new functionalities, however developers temporarily
comment out such code since the dependent functionalities are
not complete as a result of work in progress, pending refactoring
or design changes. Therefore, developers harbour the code that
implements the new functionality in comment section as CO code.
The practice of adopting CO code for compromising incomplete
relevant functionalities is quite common in both production code
and test code. An interesting exception is that, in VLC Android we
find a large number of CO code instances introduced due to import-
ing the source code of an external library into the VLC codebase.
Some other common usages include copying code templates from
documentation that have CO code embedded, and for code debug-
ging. The transition of faded as CO code is very straightforward,
for which the primary purpose we find is to remove CO code and
clean up codebase.

Table 5 summarizes the frequent motivations behind two tran-
sitions: comment and uncomment. We also annotate whether the
CO code is test or non-test code.The most common motivation
of commenting out code is to remove code for eventual deletion.
However, there exist a number of cases where developers temporar-
ily comment out the code to test new features or fix bugs where
they are later uncommented. Corresponding, it is expected that
such motivations of comment out have matching motivations of
uncomment.

For the transition of commented, the most common motivations
include marking the code for later permanent removal during non-
trivial software maintenance efforts, such as refactoring, adding
new functionalities, or design change. The less common yet preva-
lent motivations include to temporarily disable (i.e., comment out)
the code to either experiment with new functionalities, cope with
other code that is undergoing restructuring, or fix bugs. It is ex-
pected that the temporarily-disabled code would be brought back
(i-e., uncomment) when the roadblocks are removed, e.g., bugs are
fixed, or the dependent code is ready and complete.

For the transition of uncomment, there are two primary moti-
vations. First, similar to the motivation of introduced as CO code,
developers uncomment CO code to introduce the functionalities in
CO code when the roadblocks are removed, i.e., the dependent code

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

is ready. Second, we find that developers often uncomment CO code
to revert the changes made by previous commits in which develop-
ers comment out source code. We also notice that developers may
uncomment CO code both intentionally and unintentionally. Devel-
opers intentionally uncomment CO code to test new functionality,
to toggle features, or to fix bugs. On the contrary, unintentional
uncomment transitions may happen when CO code was initially
commented out for later removal. However later, developers de-
cided to discard the new implementation and revert to an earlier
version, which leads to uncomment the CO code.

Our study shows that CO code practice is adapted for a wide
variety of purposes. The primary motivation is to mark code for
later removal. Meanwhile, developers commonly utilize CO code
for aiding various development tasks quickly, such as bug fixing,
code debugging and adding features.

4 THREATS TO VALIDITY
4.1 Internal Validity

CO code extraction. Per our definition of CO code, partial code
(such aS node.getAttribute("w").equals("1")&& OY , String id) OY Set<Set<String>>
clusterset =) is not considered. Capturing them would significantly
decrease the precision of the extraction due to their incompleteness
and diverse syntax which against our best interest of applying our
method on new projects without having to manually re-calculate
the precision and recall. Also, we do not use regular expressions
to catch uncommon code statements. This can be a source of low
recall. However, our data show that we can achieve almost the same
precision and recall using just method matching and assignment
matching, which suggest that having many extra regular expres-
sions for matching is not necessary.

Transition detection. Transition detection recall is a source of
concern. Given our methodology that ties CO code transition de-
tection directly to Git’s ability to detect changes and our CO code
detection recall (which is 100% as shown in Table 1), we are confi-
dent that we can retrieve all cases of transition.

Transition labeling. On the other hand, for transition labeling,
the recall of each category is dependent on the precision of all
other categories. In our case, we have cases of fade mistaken as
uncomment, causing lower recall for fade and lower precision for
uncomment compare to other categories. This is because of our
method which compares the content of the line, transformed as
described in the approach, so if we find 2 lines of identical CO code
in the same file, even if they are on different lines, we still consider
them the same because of the lack of context. Also, we cannot
identify cases i.e. ml.banFolder(x) is refactored to mediaLibrary.banFolder(x)
Or int Backward = 2; is changed to int Backward = 2;.

4.2 External Validity

Our study is based on a set of popular open-source Java projects
from GitHub and GitLab. While these projects are from different
organizations, have different sizes, and are in different domains,
our findings may not generalize to other projects, language or
commercial software.

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

4.3 Construct Validity

Extraction validity. We reviewed our data and was surprised
to discover that, had we only try to match method calls (1) and
assignment statements (4), the precision and recall would not be
much lower than the current results. This is interesting since 2
of the patterns are responsible for most of the findings. We try
to craft patterns that can exhaustively discover all types of codes
that present in comments. While this gives diminishing returns
in increased running time and decreased precision, if we want to
make sure to capture every single instance of CO code.
Labelling transitions as move. Our label move encapsulates 3
types of CO code movements in the file: other lines in the same CO
code block is added or removed but the CO code line itself is not
touched, the CO code line is shifted up or down due to changes to
the other parts of the file, and CO code line is copied to somewhere
else in the file. We decided that these 3 cases share the same label
because: we do not distinguish the context of the CO code line; the
key purpose of the label move is to show that the CO code line stays
the same in the file, and move serves the purpose.

CO code transition purpose. While we tried to find as many pur-
poses as possible, we may not cover all the possible purposes. These
purposes were determined based on the combination of neighboring
comments, commit messages, and issue trackers, all of which may
not related to the CO code under examination. Some purposes can
also be split or merged based on the experience of the investigator.

5 RELATED WORK

In this section, we summarize prior studies on comment and source
code analysis, self-admitted technical debt and feature toggling.
Comments quality assessment and categorization. There have
been many studies on comment analysis. Here we describe the most
relevant studies that focuses on discussing the quality of comment
and performing comment categorization. Haouari et al. [7] pro-
posed a taxonomy of comments that includes categories in total.
The categorization is based on four dimensions, i.e., object, type,
style and quality. Steidl et al. [20] proposed a quality model and
metrics to assess the quality of comments and surveyed to show the
relevance of their metric to developers in practice. In particular, they
proposed to use classification techniques to categorize comments
automatically based on a mixture of location and purpose. Their
classification approach achieves a precision of 89% and a recall of
95% for identifying CO code. Pascarella and Bacchelli [16] extended
the work by Steidl et al. [20] by providing finer-grained comment
categories. In addition, Pascarella and Bacchelli experimented dif-
ferent classification algorithms and showed promising results to
classify comments into six major categories and 16 sub-categories.
These prior studies analyzed all types of comments and focus on
comments in natural language. CO code, as one type of comments, is
briefly discussed in prior studies but never comprehensively studied.
For example, Haouari et al. [7] mentioned that outdated code is often
commented out instead of removed. Pascarella and Bacchelli [16]
mentioned that CO code instances envelop functional code to hide
features, work in progress, features under test, etc. Steidl et al. [20]
mentioned that CO code instances are temporarily commented
out for debugging purposes or for potential later reuse. Our study
complements prior studies on comment analysis by focusing on

Tri Minh Triet Pham and Jingiu Yang

CO code. Also we developed a lightweight approach to identify CO
code with very high precision and recall.

Source code detection from text. Tang et al. [21] used support-
vector machine to extract non-text data from general email text and
source code is one of the targets. Their approach uses 21 features
to detect source code from each line of the email with a precision
of 92.97%, and a recall of 72.17%. Bacchelli et al. [1] used regular
expressions and pattern matching to extract source code from de-
veloper emails acquired from software system mailing list with a
precision of 94% and recall of 85%. Similar to these prior studies, the
goal of our developed approach is to identify code elements from
text (i.e., comments). Differently, our task is simpler as CO code
contains less non-code elements compared to emails. As a result,
we can detect CO code with better precision and recall.
Self-admitted technical debt (SATD). SATD [11, 13, 17] is doc-
umented in comments. The SATD comments may contain CO
code as shown in previous studies. Potdar and Shihab [17] exam-
ined the code that is intentionally introduced code as temporary
workarounds. They extracted comments from the newest version of
the projects under study and manually examined them to determine
which comments are SATD. Liu et al. [13] and Huang et al. [11]
provided tools to automate the SATD detection and management
process using a text-mining based approach. However, not every
CO code line is considered as SATD since SATD comments require
to have keywords such as “TODO”. In fact, in our dataset of CO
code, we find that SATD makes up less than 6% of our dataset.
Hence our study focus is different from previous studies on SATD
with little overlap in the datasets.

6 CONCLUSION

Commented-out code is cited as a controversial coding practice.
Despite the popularity of studies on comment, CO code is rarely
studied and often excluded in previous studies. In this paper, we
conducted the first study on CO code and focus on its prevalence,
evolution, motivation, and potential maintenance challenges. We
developed automated solutions to detect CO code instances and
track their histories in code repositories. Moreover, we performed
a manual analysis to understand the adoption of CO code practices
and the challenges.

Our study on six open-source software systems reveals that
despite the low prevalence of CO code in a recent version, CO
code practice is actively used in certain development phases, i.e.,
up to 20% of the commits involving at least one CO code instance.
Moreover by analyzing the evolution of CO code, we find that while
CO code introduced in the same commit do not often co-evolve
again, e.g., being uncommented together. Last, our manual analysis
that there exist various maintenance needs so that developers need
to utilize CO code practice. This paper presents insights on CO
code practice that is previously overlooked, and sheds light on its
prevalence and evolution in software development. Further studies
are needed to provide tooling support to help developers better
maintain and utilize CO code.

The Secret Life of Commented-Out Source Code

REFERENCES

[1] Alberto Bacchelli, Marco D’Ambros, and Michele Lanza. 2010. Extracting Source

[10

[11

[12

]

]

Code from E-Mails. In Proceedings of the 2010 IEEE 18th International Conference
on Program Comprehension (ICPC ’10). IEEE Computer Society, Washington, DC,
USA, 24-33. https://doi.org/10.1109/ICPC.2010.47

Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Kathia M. de Oliveira. 2005.
A Study of the Documentation Essential to Software Maintenance. In Proceed-
ings of the 23rd Annual International Conference on Design of Communication:
Documenting & Designing for Pervasive Information (SIGDOC ’05). Association
for Computing Machinery, New York, NY, USA, 68-75. https://doi.org/10.1145/
1085313.1085331

F-Droid. 2019. F-Droid - Free and Open Source Android App Repository. https:
//f-droid.org/

Apache Software Foundation. 2019. Apache Software Foundation.
/[www.apache.org/

Eclipse Foundation. 2019. Eclipse Foundation. https://www.eclipse.org/

https:

gaazkam (https://softwareengineering.stackexchange.com/users/212639/gaazkam).

2018. Why is it wrong to comment out code and then gradually remove it to keep
track of what I've already done and what remains to be done? Software Engineer-
ing Stack Exchange. https://softwareengineering.stackexchange.com/q/377186
version: 2019-12-01.

Dorsaf Haouari, Houari Sahraoui, and Philippe Langlais. 2011. How Good is Your
Comment? A Study of Comments in Java Programs. International Symposium on
Empirical Software Engineering and Measurement, 137-146. https://doi.org/10.
1109/ESEM.2011.22

Carl Hartzman and Charles Austin. 1993. Maintenance productivity: Observations
based on an experience in a large system environment. 138-170. https://doi.org/
10.1145/962304

JoelFan (https://softwareengineering.stackexchange.com/users/213684/). 2013.
good replacement for commenting out code? Software Engineering Stack Ex-
change. https://softwareengineering.stackexchange.com/q/213684 version:
2019-12-01.

Alexis Dufrenoy (https://softwareengineering.stackexchange.com/users/8033/)
and Thomas Owens (https://softwareengineering.stackexchange.com/users/4/).
2013. Can commented-out code be valuable documentation? Software Engineer-
ing Stack Exchange. https://softwareengineering.stackexchange.com/q/190096
version: 2019-12-01.

Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. 2017. Identifying
self-admitted technical debt in open source projects using text mining. Empirical
Software Engineering (2017), To Appear.

Zhen Ming Jiang and Ahmed E. Hassan. 2006. Examining the Evolution of Code
Comments in PostgreSQL. In Proceedings of the 2006 International Workshop on

[13

[14

[17

[18

[19

[20

[21

[22

[23

[24]

ICPC *20, October 5-6, 2020, Seoul, Republic of Korea

Mining Software Repositories (MSR ’06). Association for Computing Machinery,
New York, NY, USA, 179-180. https://doi.org/10.1145/1137983.1138030
Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping
Li. 2018. SATD Detector: A Text-Mining-Based Self-Admitted Technical Debt
Detection Tool. In Proceedings of the 40th International Conference on Software
Engineering - Tool Demonstrations track (ICSE’18 Demos). IEEE.

nikie (https://softwareengineering.stackexchange.com/users/14237/) and GBH
(https://softwareengineering.stackexchange.com/users/38887/). 2011. Is com-
mented out code really always bad? Software Engineering Stack Exchange.
https://softwareengineering.stackexchange.com/q/190096 version: 2019-12-01.
Oracle. 2019. Java Documentation: Javadoc. https://docs.oracle.com/javase/8/
docs/technotes/tools/unix/javadoc.html#CHDBEFIF

Luca Pascarella and Alberto Bacchelli. 2017. Classifying Code Comments in
Java Open-source Software Systems. In Proceedings of the 14th International
Conference on Mining Software Repositories (MSR °17). IEEE Press, Piscataway, NJ,
USA, 227-237. https://doi.org/10.1109/MSR.2017.63

Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted
Technical Debt. In Proceedings of the 30th IEEE International Conference on Software
Maintenance and Evolution (ICSME’14). 91-100.

Md Tajmilur Rahman, Louis-Philippe Querel, Peter C. Rigby, and Bram Adams.
2016. Feature Toggles: Practitioner Practices and a Case Study. In Proceedings
of the 13th International Conference on Mining Software Repositories (MSR ’16).
Association for Computing Machinery, New York, NY, USA, 201-211. https:
//doi.org/10.1145/2901739.2901745

Davide Spadini, Mauricio Aniche, and Alberto Bacchelli. 2018. PyDriller: Python
framework for mining software repositories. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering - ESEC/FSE 2018. ACM Press, New York,
New York, USA, 908-911. https://doi.org/10.1145/3236024.3264598

D. Steidl, B. Hummel, and E. Juergens. 2013. Quality analysis of source code
comments. In 2013 21st International Conference on Program Comprehension (ICPC).
83-92. https://doi.org/10.1109/ICPC.2013.6613836

Jie Tang, Hang Li, Yunbo Cao, and Zhaohui Tang. 2005. Email Data Cleaning. In
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining (KDD ’05). ACM, New York, NY, USA, 489-498. https:
//doi.org/10.1145/1081870.1081926

Ted Tenny. 1985. Procedures and Comments vs. the Banker’s Algorithm. SIGCSE
Bull. 17, 3 (Sept. 1985), 44-53. https://doi.org/10.1145/382208.382523

T. Tenny. 1988. Program readability: procedures versus comments. IEEE Transac-
tions on Software Engineering 14, 9 (1988), 1271-1279.

S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. 1981. The Effect of Modular-
ization and Comments on Program Comprehension. In Proceedings of the 5th
International Conference on Software Engineering (ICSE ’81). IEEE Press, 215-223.

